Interferon regulatory factor 4 (IRF-4) targets IRF-5 to regulate Epstein-Barr virus transformation.

نویسندگان

  • Dongsheng Xu
  • Florencia Meyer
  • Erica Ehlers
  • Laura Blasnitz
  • Luwen Zhang
چکیده

The cellular interferon regulatory factor-4 (IRF-4), which is a member of IRF family, is involved in the development of multiple myeloma and Epstein-Barr virus (EBV)-mediated transformation of B lymphocytes. However, the molecular mechanism of IRF-4 in cellular transformation is unknown. We have found that knockdown of IRF-4 leads to high expression of IRF-5, a pro-apoptotic member in the IRF family. Overexpression of IRF-4 represses IRF-5 expression. Reduction of IRF-4 leads to growth inhibition, and the restoration of IRF-4 by exogenous plasmids correlates with the growth recovery and reduces IRF-5 expression. In addition, IRF-4 negatively regulates IRF-5 promoter reporter activities and binds to IRF-5 promoters in vivo and in vitro. Knockdown of IRF-5 rescues IRF-4 knockdown-mediated growth inhibition, and IRF-5 overexpression alone is sufficient to induce cellular growth inhibition of EBV-transformed cells. Therefore, IRF-5 is one of the targets of IRF-4, and IRF-4 regulates the growth of EBV-transformed cells partially through IRF-5. This work provides insight on how IRFs interact with one another to participate in viral pathogenesis and transformation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interferon regulatory factor 4 is involved in Epstein-Barr virus-mediated transformation of human B lymphocytes.

Epstein-Barr virus (EBV) infection is associated with many human malignancies. In vitro, EBV transforms primary B lymphocytes into continuously growing lymphoblastoid cell lines. EBV latent membrane protein 1 (LMP-1) is required for EBV transformation processes. Interferon regulatory factor 4 (IRF-4) is a transcription factor and has oncogenic potential. We find that high levels of IRF-4 are as...

متن کامل

Interferon regulatory factor 7: a key cellular mediator of LMP-1 in EBV latency and transformation.

Interferon regulatory factor 7 (IRF-7) was cloned within the biological context of Epstein-Barr virus (EBV) latency, and has an intimate relation with EBV. EBV latent membrane protein 1 (LMP-1) regulates IRF-7 both by inducing the expression of IRF-7 and by activating IRF-7 protein through phosphorylation and nuclear translocation in a post-translational manner. The activated IRF-7 then functio...

متن کامل

Manipulation of the toll-like receptor 7 signaling pathway by Epstein-Barr virus.

Epstein-Barr virus (EBV) infection of primary B cells causes B-cell activation and proliferation. Activation of B cells requires binding of antigen to the B-cell receptor and a survival signal from ligand-bound CD40, signals that are provided by the EBV LMP1 and LMP2A latency proteins. Recently, Toll-like receptor (TLR) signaling has been reported to provide a third B-cell activation stimulus. ...

متن کامل

IRF-7, a new interferon regulatory factor associated with Epstein-Barr virus latency.

The Epstein-Barr virus (EBV) BamHI Q promoter (Qp) is the only promoter used for the transcription of Epstein-Barr virus nuclear antigen 1 (EBNA-1) mRNA in cells in the most restricted (type I) latent infection state. However, Qp is inactive in type III latency. With the use of the yeast one-hybrid system, a new cellular gene has been identified that encodes proteins which bind to sequence in Q...

متن کامل

Interferon regulatory factor 7 is associated with Epstein-Barr virus-transformed central nervous system lymphoma and has oncogenic properties.

Interferon regulatory factor 7 (IRF-7) is implicated in the regulation of Epstein-Barr virus (EBV) latency. EBV transforms primary B cells, and the major EBV oncoprotein, latent membrane protein 1 (LMP-1), is required for the process. LMP-1 both induces the expression of IRF-7 and activates the IRF-7 protein by phosphorylation and nuclear translocation. Here we report that the expression of IRF...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 286 20  شماره 

صفحات  -

تاریخ انتشار 2011